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ABSTRACT
MABE (Modular Agent-based Evolver) is an open-source evolution-
ary computation (EC) research platform designed to be used by
biologists, engineers, computer scientists, and other researchers.
MABE’s primary goal is to reduce the time between thinking up a
new hypothesis and generating results. The design assumes that
there are common elements in many EC research projects. MABE
improves efficiency by allowing for the reuse of these common
elements and standardizing of interfaces for non-common elements
so that they can be used interchangeably. As of the writing of this
paper, theMABE framework is five years old. Here, we reflect on the
current version of MABE, including its successes and shortcomings,
and propose upgrades for the next release.
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and environments; Software implementation planning; Software
post-development issues; • Computing methodologies → Artifi-
cial life;
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1 INTRODUCTION
MABE (Modular Agent-based Evolver) is an open-source evolution-
ary computation (EC) research platform designed to be used by
biologists, engineers, computer scientists, and other researchers [1].
MABE allows users to create experiments by combining five types of
module components: worlds (problems or environments), genomes
(sources of heritable and mutable data), brains (neural/cognitive dig-
ital architectures such as artificial neural networks or genetic pro-
grams), optimizers (parent-selection and population-management
processes), and archivists (data tracking and recording). Modules
are described in detail below. Modules of a given type are inter-
changeable, so switching from one brain type to another is as simple
as changing a brain type parameter from “ANN” to “GP”.

MABE is implemented using C++14 (depending only on standard
libraries). MABE source code and documentation can be accessed
at https://github.com/Hintzelab/MABE.

MABE was inspired by the observation that many EC programs
share common concepts (e.g., fitness functions, selection schemes,
populations, etc.). A system that leverages these similarities would,
not only allow for efficient reuse of common components, but
also remove communication road blocks and simplify compari-
son, replication, and integration of results that would otherwise
be generated by different systems. Of course, there is a reason that
researchers use a diversity of software: different EC systems have
unique behaviors and are required to work in different ways. Our
goal was to design a system that provides sufficient struc-
ture to support portable, reusable, and interoperable compo-
nents, while providing the flexibility needed to implement
different EC systems.

MABE is a software framework that improves efficiency though
component reuse in order to reduce the time between thinking
up a new hypothesis and generating results. In addition, MABE
promotes synergistic research by allowing users from different
backgrounds to work in a single software ecosystem.

MABE is designed to be used by individuals with a range of
programming skills and academic backgrounds (e.g., evolutionary
and ecological biology, neural biology, economics, psychology, engi-
neering, computer science, evolutionary computation, etc.). MABE
affords non-programmers an off-the-shelf software platform with
an ever-growing collection of ready-made modules that can be
combined and configured using a parameters system that requires
no interaction with code. More advanced programmers can develop
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their own modules to extend MABE’s functionality: new modules
are immediately compatible with all previously existing modules,
and each new module expands the set of possible systems that can
be constructed using MABE.

Modules allow users to focus their efforts on topics important
to them without requiring a detailed understanding of the entirety
of MABE. For example, an evolutionary computation researcher
interested in determining how selection methods affect rates of
adaptation couldwrite an optimizer that allowed them to investigate
different hypotheses. Theywould not need toworry about any other
code, as they could make use of exiting modules and core functions
for the rest of their research system.

MABE is a living software project. EC is a fast-paced field, so
in order for MABE to keep up we are always implementing new
ideas. In order to balance stability for existing users and potential
instability generated from integrating new features, we rely on
version control methods and versioned releases. Most new releases
are designed to avoid breaking changes (that is, they either add
functionality or fix bugs but do not change existing behavior). On
the rare occasion that we do need to make a breaking change, we
provide information about how the changes will affect current users
and provide support for upgrading to the newest version. On very
rare occasions, we may feel that accumulated small changes or
support for new features requires us to revisit the basic structure
of MABE, and this may result in significant system-wide changes.

MABE is in its fifth year, and we have decided that the first
significant system-wide rewrite of the software is warranted. The
various reasons for the rewrite are discussed in detail later in this
paper.We are currently in the process of designing the next iteration
of MABE (version 2.0). As we design and implement MABE 2.0 (and
moving forward), we are broadly seeking community feedback
on the current version, and plans for the new version, as well as
suggestions for features beyond the scope the current redesign.

In this paper, we briefly talk about who is using MABE and for
what. Then, we provide an introduction to MABE as it exists now
including some more in-depth analysis of design choices than was
investigated in previous publications. This is followed by a section
describing proposed changes and additions for MABE 2.0. For a
more basic introduction to MABE see [1].

1.1 Who is using MABE and for what?
MABE has been used to conduct a broad array of computational
evolution research, including evolved cognition [25], decision mak-
ing [15], internal representation [10, 17], learning [27, 28], swarm
behavior [5], psychology [22], and hybrid computational architec-
tures [11]. MABE’s modular, mix-and-match design and a broad set
of existing MABE modules [1] has reduced the barrier to carrying
out large-scale experiments that would otherwise be unwieldy.

In one paper that exemplifies the advantage of MABE’s modular
design, the Buffet Method, proposed by Hintze et al. [11] capital-
ized on MABEs ability to swap worlds. This work extended Markov
Brains [9] by adding new gate types (computational elements) rep-
resentative of other EC systems (GP trees, NEAT [30] and, ANNs),
allowing these elements to interact directly in a single network
representation. Evolution was able to compose heterogeneous net-
works from arbitrary combinations of these elements. To explore

Figure 1: Data generated using MABE showing normalized
gate usage for Markov Brains evolved in different worlds.
Brainswere initializedwithmultiple types of randomly con-
figured gates, the ratios of which changed over time as a
result of evolution. The x axis lists the worlds that were
tested and the y axis shows gate usage by gate type recorded
from brains after 5,000 generations. Colors indicate gate
type: classic Markov Brain gates (in orange: deterministic
logic, in red: probabilistic logic), Genetic Programming gates
(in shades of green), NEAT gates (in shades of blue), and
ANN gates (in dark grey). The data illustrate that Determin-
istic Markov Brain gates were favored in the XOR and Mem-
ory worlds, whereas ANN gates were favored in the Regres-
sion and Pendulum worlds. This figure was generated using
Python and Matplotlib.

the efficacy of the Buffet Method, Hintze et al. [11] evaluated the
‘Buffet Method’ networks (brains) in nine different worlds that
defined tasks from various EC domains. Homogeneous networks,
comprised of a single element type, were well-suited for solving
some, but not all, of the problems. However, by giving evolution
access to all of these computational elements simultaneously, the
Buffet Method discovered high performance (often hybrid) solu-
tions across all problems. Figure 1 shows how the evolved solutions
for different tasks differed in gate usage, suggesting that different
types of computational elements are beneficial in different situa-
tions and that evolution can be used as a method to detect these
differences.

In other work, Hintze et al. [10] used MABE to study repre-
sentation or “R” (a measure of how much environmental informa-
tion from previous observations is stored internally) and smeared-
ness (how focused or distributed the environmental information
is among the elements that make up a brain) by evolving three
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Figure 2: Data generated using MABE to evolve agents pre-
forming a quantity comparison task. The left column shows
mean fitness (W ), reported as a percentage of trials that the
agents answered correctly, averaged over 400 replicate ex-
periments. Standard error is shown in grey. The right col-
umn displays fitness versus representation (R) at 40,000 gen-
erations for each replicate experimentwhere representation
is a measure of information shared between a brain and the
environment. The black line in the right column is the line
of best fit. Each row represents data from a different type
of brain. It can be observed, for example, that Markov Brain
(MB) / ANN hybrid brains and RNN brains both achieve sim-
ilar fitness but that the levels of representation are higher
and have less variance in RNN brains. This figure was gen-
erated using Python and Matplotlib.

different types of brains (long short-term memory units (LSTM),
recurrent neural networks (RNN), and Markov brains) in a block
catching environment (for a description of “R” and the environ-
ment see [18]). In more recent work, the same team has looked at
how four types of brains (LSTM, RNN, Markov Brains with ANN
gates, and Markov Brains with deterministic logic gates) evolved
in a world where agents were required to use memory on a value
comparison task, and they showed how noise in inputs affected “R”
and smearedness across different brain types[14]. Figure 2 shows
scores (“W”) over time and final score vs representation (“R”) for
each replicate for various types of brains in the absence of input
noise (the control case).

Beyond published research, MABE has been used by students
in both undergraduate and graduate classes at Michigan State Uni-
versity: “Multi-disciplinary Approaches to the Study of Evolution”,
“Digital Approaches to the Evolution of Nervous Systems”, “Evo-
lution of Artificial Intelligence”, and “Evolutionary Computation”.

MABE allowed students to focus on a single aspect of their project,
developing or modifying the modules of interest and reusing exist-
ingmodules when possible. In the context of the classroom,MABE’s
capacity for module-reuse coupledwith a repository of existing (and
well-vetted) module implementations allowed students to tackle
more challenging projects than would have otherwise been feasible.

2 MABE DESIGN
Many evolutionary computation experiments share common con-
cepts, such as a population of individuals (e.g., programs, neural
networks, candidate solutions, simulated biological organisms, etc.)
where each individual is encoded (specified) by mutable and herita-
ble material, an environment or problem of interest which may be
used directly or indirectly to evaluate agents, parent-selection and
population management techniques, data tracking and recording
functions, and user-specified parameters. The implementations of
some of these concepts can be shared across experiments without
modifications, while the need for different behaviors in other con-
cepts may require changes in implementation from experiment to
experiment. For example, different users may need customized im-
plementations for genetic encodings, memory representations, or
parent-selection techniques, but the functions allowing for parame-
ter specification, data recording, and random number generation
need not change because of the experiment.

The concepts that can be held constant across all (or most) ex-
periments are part of core. Core includes functions to initiate and
execute experiments and utilities that provide general support for
parameters, data management, file I/O, and random number gen-
eration. Any concept that cannot be held constant (i.e., requiring
unique internal implementation) must be part of a module. MABE
core defines the interfaces for each type of module (i.e., how the
module communicates with MABE and other modules), but in order
to provide the highest degree of flexibly, the module interfaces do
not define any specific details related to a module’s internal opera-
tions. The implementation of modules is left entirely to users. As
long as a user defined module conforms to the module interface,
then there are no restrictions on how a module behaves. MABE’s
design rests on the foundation that we can provide standard inter-
faces to modules without limiting their internal algorithms, data
structures, or implementation details. This design affords consid-
erable experiment decomposability, allowing researchers to share
and reuse individual modules across experiments.

We identified five concepts that needed to be modules in order to
support the the variety of experiments possible in MABE: worlds,
genomes, brains, optimizers, and archivists. In figure 3 we illustrate
how the modules typically interact.

• Worlds are problems or environments. Generally, worlds
provide inputs (e.g., the current world state) to agents and
respond to outputs generated by agents. A simple world may
deliver two numbers to an agent and evaluate the agent’s
ability to add those numbers. Some worlds provide no inputs;
for instance, a multi-objective optimization problem or a
fitness function like an NK fitness landscape [12] may not
have world state, and only require agents to deliver a list of
output values. Finally, a complex world could be designed
where agents must navigate a virtual space, foraging for food
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while avoiding predators and seekingmates. The input might
communicate aspects of world state, such as the relative
positions of food and danger, and the agents outputs could
be interpreted by the world as actions such as turn left or
right, move forward or back, eat, et cetera.

• Genomes are sources of heritable andmutable data. Genomes
are usually used to provide data used to construct other ele-
ments: a genome may be used by a brain to determine that
brain’s structure or by a world to determine the properties
of an agent’s body. The genome interface requires access
functions to write values into the genome (including ran-
domizing the genome) and read values from the genome.
Each type of genome defines its own internal data structures,
access function behaviors, and mutation operators.

• Brains are data processors that receive input and deliver out-
put. Brains are the most common method by which agents
communicate with worlds (although worlds interfacing di-
rectly with genomes is an option). Under this abstraction,
genetic programs, artificial neural networks, Markov Brains,
et cetera are classified as brains. Depending on the user’s
context, they may find it easier think of brains as controllers,
solvers, solutions, I/O machines, or even chemical processes.
The brain interface specifies how brains can receive input
and deliver output. Each type of brain must define its inter-
nal workings, including update function, internal states, and
internal data structures.

• Optimizers manage populations, select parents, oversee re-
production, and terminate agents who get to be too old or fail
to meet certain criteria. Roulette selection, tournament selec-
tion, lambda+n, lexicase selection [8], and MAP-Elites [19]
are all examples of the types of algorithms optimizers typi-
cally implement.

• Archivists allow users to determine what data will be saved
and at what resolution. Archivists can save individual or
population level data and can track lines of decent and other
temporal effects.

The typical experiment uses one module of each type, but this
is not a requirement. Consider a foraging world where organisms
divide whenever they collect enough resources. This world might
manage reproduction locally and not rely on an optimizer. Or, con-
sider a world where agents have a brain and world-defined sensors
that are are placed using a genome. A user could configure MABE
so that the agents had a single genome that was used to generate
both the brain and sensor placement (allowing for genetic interac-
tions), or the user could configure MABE so that the agent had two
genomes (in which case the brain and sensor placement would be
genetically independent).

3 DESIGN PHILOSOPHY: WHAT BELONGS IN
CORE? WHAT BELONGS IN MODULES? IS
THERE A PLACE FOR LIBRARIES?

We have been deliberate to only include concepts in core that have
broad utility and can be generalized across experiments. Attempting
to create standards for elements that cannot be generalized (such
as how vision functions in a world - see below) may be useful to
some users but would create road blocks for users who require

Figure 3: A simple diagram of the organization of MABE’s
modules in a typical configuration. World, Genome, Brain,
Optimizer and Archivist are Modules. Agent and Group are
internal container classes.

behavior not supported by the standard. In some cases, we have
been able to identify core features that will be of use to some users
while not hindering the remainder of users; in these cases, we may
have decided to include the feature if it is either trivial (i.e., will not
degrade efficiency or contribute significantly to code bloat) or if
the feature is useful to a significant proportion of the user base.

Much of the difficulty in designing MABE has been determining
when to standardize (i.e., include in core) and when to insist that
some element must be user defined (i.e., be specified in a module).
While some choices are obvious, other choices are complex, and
even after significant deliberation it can be non-trivial to decide
whether or not a feature should be part of core. The following
examples are case studies related to determining when a particular
functionality should be core and when it should not. The first
example is a case addressing brain-world communication where
functionality was included in core. This is followed by two cases,
relating to brains’ internal data and implementing worlds, where
functionality was not added to core.

Example 1. The brain module interface definition lists the func-
tions that must be part of all brains. Three such required functions
define behavior to a) set brain inputs (a fixed number of real number
values), b) update the brain (i.e., trigger some process defined by the
brain to convert inputs into outputs), and c) read the resulting out-
puts (also a fixed number of real number values). But, not all brains
need all of the functionality specified in the brain interface defini-
tion. One brain type, ‘ConstantValueBrain’, converts a genome to
a fixed list of output values. This brain requires neither input nor
update because the brain determines its outputs on construction.
This brain is perfectly capable in some worlds (max one, NK fitness
landscapes), so it is reasonable that a user would want to use it. We
could have decided that the brain interface should only be required
to provide output values, but most brains cannot be represented by
a static list; they accept inputs and respond differently to different
inputs. We therefore decided to include the “set input” and “update”

1352



MABE 2.0 GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

functionality in the brain interface definition. As a result, when
writing “ConstantValueBrain”, these functions need to be present
(but can be empty). We see this as a small and rare overhead cost
important to achieving modularity.

Example 2. On the other hand, many, but not all brains, have in-
ternal (or hidden) information. This hidden information is required
for stateful brains and memory. Unlike the input and update func-
tions discussed above, we cannot include functionality related to a
brain’s hidden information in the brain interface definition because,
we cannot know the data type or structure of hidden information
that will be needed within a specific user-defined brain type. As a
result, we cannot define functions that access hidden information
in the brain interface definition without the risk of limiting the
types of brains that can be built in MABE.

Example 3. Finally, let us consider the comparison of brain-world
communication (functionality defined in core) versus vision in
a world (functionality a user must provide). MABE standardizes
brain-world communication via two lists of numbers (the brain
input and output vectors described above). This I/O vector design
supports many architectures (e.g., Markov Brains, ANN, GP, CGP)
and allows users to create many worlds and brains and to connect
them arbitrarily. On the other hand, vision is intertwined with
the definition of the world (is the world two-dimensional or three-
dimensional? What is the depth and width of the view arc? What is
the resolution of the view sensor? Are there colors? Are the vision
sensors perfect or imperfect? If imperfect, what sort of error?).
Thus, vision must be left to the world builder to define, or we risk
creating a scenario where a user is not able to conduct a particular
experiment without resorting to workarounds.

MABE does not preclude the use of third-party libraries in user-
generatedmodules; some experiments may require specialized (non-
generalizable) functionality, requiring users to provide their own
solutions. In fact, using third party libraries is advisable when pos-
sible and particularly when it allows for code reuse. Libraries have
been created to support various areas that may be of use to module
development such as physics simulations (Bullet [2], Chrono [33]),
robot control [23], et cetera. One of MABE’s strengths is that it
places no restrictions on module-level code, so external systems
and libraries can be incorporated into user-developed modules. In
MABE 2.0 documentation, we will include suggestions for third-
party libraries that can be used to support common tasks in module
building and, when appropriate, we will even warehouse libraries
if they prove to be particularly useful.

4 MABE 2.0: THE FUTURE OF MABE
MABE originally started as a proof of concept and has developed
into a capable research tool. Over MABE’s four years of develop-
ment, we have been able to investigate how early choices in design
affected the resulting software. We have also experienced using
MABE first-hand and have collected feedback from other users. We
have identified a number of areas for improvement and are in the
process of preparing a new major release. Over the second half of
2018, we held a series of meetings, including individuals outside the
project, to investigate potential design upgrades for MABE 2.0. The
focus of these meetings was two-fold: (1) how best to improve on
the current features of MABE, and (2) how to expand the audience

while avoiding generalization traps (i.e., how can we add features
that do not create restrictions?). We have also joined with the de-
velopers of Empirical [20], a software library that provides tools
for developing high-performance scientific software in C++ that
is also web-capable. In MABE 2.0, Empirical library components
will be used in core development and will be available to module
builders. The remainder of this paper is dedicated to discussing the
proposed improvements and upgrades that we plan to implement
for MABE 2.0.

4.1 The Empirical library and web integration
The Empirical library [20] provides a set of well-tested software
tools designed to streamline development of efficient scientific soft-
ware. These tools include configuration management, signalling
techniques, data handling, and numerous customized data struc-
tures and utilities (e.g., fast functions for pulling random numbers
from a binomial distribution).

Empirical is built to facilitate use of the Emscripten compiler [37],
which compiles C++ to Web Assembly and allows for web applica-
tions the run at near-native speeds. Empirical includes C++ func-
tions powered by Emscripten that provide building blocks support-
ing the development of interactive web based visualizations that
will run on any web browser.

MABE 2.0 will be built using the Empirical library, and Empirical
will ship with MABE allowing module developers to easily make
use of tools that it provides. Furthermore, putting MABE 2.0 onto
the web will allow end users to trivially run the software without
needing to manually download or compile on their own computer.
The web support that Empirical and Emscripten provide will allow
MABE 2.0 to automatically generate intuitive graphical interfaces
augmenting the current text only configuration files. We will ad-
here to the HTML5 standard to ensure that no additional plugins
are required to use the software. Web-enabled software has the
additional benefits of allowing for easy integration of applications
into blog posts or JavaScript enabled presentations, and these ap-
plications can be combined with existing JavaScript packages to
provide high-end user experiences.

4.2 Non-linear code flow
The current version of MABE combines object-based design (par-
ticularly in module structure) and procedural design (to control
high level program flow) [6]. As a result, module definitions are
quite flexible, but high-level execution (the order of operations
such as agent evaluation, reproduction and death, and when data
is archived) is restrictive. This was an intentional choice to accept
less flexibility for more modularity. In order to allow for more com-
plex flow control, while still maintaining modularity, we plan to
implement a signal system that can trigger the execution of code
based on certain defined events. A signaling systemwould provide a
structured set of rules that would allow module developers to break
out of the prescribed procedural flow by introducing user-defined
events and the code that will be executed when those events occur.
In addition, core could define signals, such as “onBirth”, “onDeath”,
“newGeneration”, et cetera, allowing users the option to insert their
own response when the associated event occurs.
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4.3 World-brain Interaction
In the current implementation, brains and worlds interface via two
access functions that handle brain I/O and an update function that
executes the brain’s internal code (effectively converting input val-
ues to output values). This design is simple and supports any neural
architecture that a) has inputs and outputs that can be represented
by lists of numbers and b) an update procedure that is always run
to completion. This allows for many types of architectures (e.g.,
Markov Brains, ANN, RNN, LSTM, Tangled Program Graph [13],
GP, and CGP), but it fails to effectively cover architectures that have
partial updates (e.g., Avida [21] and Signal GP [16]) or that allow
either partial input or require input that cannot be represented as
a list of numbers (PushGP [29], convolutional ANNs). Both short-
comings could be overcome in the current design, but it would be
programmatically challenging and unaesthetic.

It is noteworthy that the current model of world-brain interac-
tion does not support sending data that is not formatted as a list
of numbers between worlds and brains. For example, we cannot
communicate 2D image data directly. We can discretize an image;
however, this will discard data formatting and require the brain to
evolve the ability to reconstitute the image or require the brain to
be written with knowledge of the input format. Any hard-coded
input-to-image conversion would make that brain incompatible
with worlds that do not provide their inputs in the exact same order,
breaking modularity.

In MABE 2.0 we will exchange the lists of numbers currently
used for input and output for labeled signals where each signal is
associated with arbitrary typed data. Worlds will be able to generate
signals for brains (input) and brains will be able to generate signals
for worlds (outputs). Individuals developing brainmodules will need
to decide on the data types that their brain will accept and then
will need to implement their brain so that it can create generalized
responses for the data types that they accept. Not all brains will
need to be compatible with all data types. While a brain that does
not have functions for working with images will not be directly
compatible with a world that provides image inputs, users will be
able to create meta-brains where the output of one brain can be
used as the input to a second brain. For example, imagine a world
in which two images containing numbers are presented to agents
and the agents are expected to return the sum of the numbers
displayed. A brain that can take images as input and generate a list
of numbers (a “feature detection brain”) could receive the inputs
and then have its output directed into a Markov brain (or any of
the currently supported brain types in MABE). The combination
of brain composability and arbitrary data types will not only allow
MABE 2.0 to implement currently unavailable brain types but it
will also allow for new hybrid architectures (an area of study that
shows promise [11]).

4.4 Parameters utility and data archiving
The ability for developers to easily import user-defined information
is critical to the success of any research software. The current pa-
rameters system supports user-defined parameters. Each parameter
includes that parameter’s data type (double, int, string, bool), default
value, name, category, and a usage message that appears in automat-
ically generated configuration files. The current process for adding

parameters is relatively simple: for each parameter, a developer
only needs to add a variable declaration and a separate assignment
that includes a function call, but this still requires changes to two
files for each parameter and could be simplified. MABE automati-
cally generates configuration files with usage information based
on the modules in use and with parameters organized by category.
MABE 2.0 will streamline the parameters system, while adding
(1) arbitrary data types, (2) optional value ranges, (3) improved
control over configuration file organization, and (4) more options
for adding and formatting documentation in configuration files.
These new features will also be leveraged by graphical tools that
will automatically generate interactive configuration interfaces.

In current MABE, DataMaps are used to store data and allow
for data communication between modules. Data export is handled
mostly by a combination of DataMaps and a File Manger utility.
The DataMap code will be rewritten both for improved efficiency
and for expanding the number of types allowed (currently only
double, int, string, and bool). Additional output file formats will
also be supported (at least JSON and binary).

4.5 Machine learning support
The domain of machine learning is not well-supported by the cur-
rent version of MABE. For instance, to use backpropagation of a
neural network in the current implementation, a user must cre-
ate a brain module that correctly backpropagates a training delta.
Additionally, the user must write a world module that supplies
specific input sequences that also contain training information. Un-
fortunately, this breaks modularity of both the brain and world.
In the redesign, we plan to add functionality (most likely in the
form of signal events) to brains to make them more accessible al-
lowing machine learning optimization methods to be implemented
while adhering to MABE modular design. With signals and data
passing for input, output, and feedback events, brain modules will
be free to process or ignore such data. This separation by signal
also allows feedback phases to occur at irregular intervals should
the world be designed for this. In this way, MABE 2.0 will allow
seamless interaction between evolutionary methods and machine
learning methods, simplifying the creation of hybrid evo-ML brains,
which is of interest to the field of Auto Machine Learning (a.k.a
AutoML or meta optimization algorithms [24, 31, 34]). In addition,
we will include several initial World modules for standard machine
learning problems: Fashion-MNIST [36], pole balancing [4, 32], half-
cheetah [7, 35]. This prepackaging and modularity of problems may
eventually allow MABE to be a useful benchmarking tool, espe-
cially given the ability to compare wildly different problems and
computational substrates.

4.6 Improved user experience
MABE has three (mutually non exclusive) types of users: end users,
modules builders, and core developers. For end users, MABE is a
finished product that they interface with via configuration files.
Beyond understanding what they are using MABE to study, these
users only need to be able to set parameters and software options.
Improvements to the end user experience will mostly involve better
user interfaces, such as graphical systems for configuration (for
example, slider controls with meaningful bounds), better organized
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configuration options, parameter namespace management, docu-
mentation that is accessible from within configuration options, and
interactive world and agent interfaces that display real time sta-
tus. These improvements will be particularly useful in educational
settings.

Module builders are userswho build ormodifymodules (genomes,
brains, worlds, optimizers, or archivists). These users must be fa-
miliar with basic C++ (variables, loops, functions, etc.) as well as
the interface definition for the modules they are developing. Mod-
ule builders will see the most improved user experience. First, the
signal manager will allow for greater control over execution flow
which will allow for more complex algorithms. The brain world
communication upgrades will allow for more complex interfac-
ing between brains and worlds, which will allow for new types
of brains. The parameters utility improvements will simplify the
process of adding parameters and managing parameters file and
interface organization.

Finally, core developers decide what features are part of core and
are responsible for writing core. Core developers must be fluent
in C++. Since we have a much better idea of the requirements for
MABE 2.0, the overall design will be more streamlined and logical.
Documentation, testing, and the build system will be developed
alongside the MABE 2.0 code and so will receive more attention
and more integrated support then the current version.

5 CONCLUSIONS
When we began MABE development five years ago, we had an idea
to create a research tool with broad applicability for a wide range
of users across many domains. The code structure and feature set
required to achieve this goal was not clear, and we were not confi-
dent that our goal was even possible. We now feel confident that
it is! Along the way, we realized that MABE would be more than
just a time-saving tool, it changed the way we thought about our
research. Because MABE enabled swapping modules and encour-
aged investigating questions in different ways, we began to look at
problems from different perspectives and to become more aware
of similarities among fields that we previously viewed as isolated.
Working on MABE has lead us to work on new projects and to
seek out interactions with people working in fields that we once
thought were quite different than our own only to find out they are
asking many of the same questions. Our goal now is for MABE to
become a free and open source project managed by a self-governed
community of developers. This is a model that has worked for other
large software projects such as the C++ and Python programming
languages, Cytoscape [26] (a network visualization and analysis
tool), and khmer [3] (a tool for prepossessing large DNA sequencing
data sets).

We are excited to see where MABE development will lead. We
are hopeful that MABE will not only accelerate research, but bridge
disciplines allowing for the synthesis of new ideas that advance
Evolutionary Computation and its applications.
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