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1 INTRODUCTION

Here, we demonstrate the use of tags (evolvable labels that can be
specified with imperfect matching) to identify memory positions in
genetic programming (GP). Specifically, we conducted a series of ex-
periments using simple linear-GP representations on five problems
from the general program-synthesis benchmark suite [2]. We show
that tag-indexed memory does not substantively affect problem
solving success relative to more traditional, direct-indexed memory.
In traditional software engineering, human programmers create
variables with unique names to specify data that they are work-
ing with. These variables are inherently associated with locations
in memory that are accessed by using the variable’s name. This
technique for referencing values in memory is intentionally rigid,
requiring programmers to precisely name the data they want to
reference, and imprecision results in syntactic errors. Many tradi-
tional GP systems that give genetic programs access to memory (e.g.,
indexable memory registers) use similarly rigid naming schemes
where memory is numerically indexed, and mutation operators
must guarantee the validity of memory-referencing instructions. In-
terestingly, although exact naming is the most intuitive referencing
mechanism for human programmers, evolution in other contexts
(such as identifying modules to run [7]) has been shown to be more
successful when program references are allowed to be inexact. Be-
yond computer code, robustness to perturbations is also thought to
be important in the evolution of complex biological systems [5].
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Figure 1: Examples of (A) direct-indexed memory and (B) tag-
accessed memory. The programs in (A) and (B) behave identically:
both request input to the first memory register, set the second mem-
ory register to the terminal value ‘2’, place the result of multiplying
the contents of the first two memory registers into the fourth mem-
ory register, and output the contents of the fourth register. Here,
we show the state of memory after the Mult instruction has been
executed. Note that not all instructions use all three arguments.

Tags are evolvable labels that give genetic programs a flexible
mechanism for specification, originally used by Holland in genetic
algorithms ([4]) and refined by Spector et al. for GP [8]. To facilitate
inexact referencing, the similarity (or dissimilarity) between any
two tags must be quantifiable; a referring tag can always reference
the closest matching referent tag. Here, we continue to expand the
integration of tags into linear GP by allowing instructions to use
tags to identify positions in memory (as needed for their function).
All instructions have three tag-based arguments, each of which is
represented as a length-16 bit string and compared using Hamming
distance to measure similarity. Our instruction set allows programs
to perform basic computations, manipulate memory contents, and
control execution flow (see supplemental material [6] for details).
Programs are executed in the context of a virtual CPU that gives
them access to 16 statically tagged memory registers used for stor-
ing data for performing computations. Figure 1 contrasts tag-based
memory with direct-indexed memory. Tag-based instruction argu-
ments reference the memory position with the closest matching tag;
as such, argument tags need not exactly match any of the tags as-
sociated with memory positions. This inexactness makes program
phenotypes more robust to minor genetic perturbations, smooth-
ing the genotype-phenotype mapping relative to more traditional
memory-indexing techniques.

2 EXPERIMENTAL RESULTS

We compared the performance of our simple linear GP to a vari-
ant that replaced the tag-accessed memory with memory indexed
with direct arguments (which is more akin to memory access in
traditional linear GP [1]). We evolved programs using the lexicase
parent selection algorithm [3] to solve five problems from Helmuth
and Spector’s program synthesis benchmark suite [2]: number IO,
smallest, median, grade, and for loop index. For each problem, we


https://doi.org/10.1145/3319619.3321892
https://doi.org/10.1145/3319619.3321892
https://doi.org/10.1145/3319619.3321892

GECCO ’19 Companion, July 13-17, 2019, Prague, Czech Republic

Numeric Arguments Tag-based Arguments
4p 44 46 46 48 44 4 48 47 50 z
401 ) 7 23 =
22 2 o
204 ]
[ 5
0.
4 39 (%]
40 7 > 2
28 28 26 24 24 24 o
~uni N ENEENEN. . . ¢
i 0 0 0
g 0
&
— i 39 39
R . 4 5 . 5
3 20f 2 5
L] | & :
S of 00 0
n
44 45 44 4
401 36 ®
o
20 o &
o4 Blo oo
-
(=}
1 22 ! 22 22 g
T | [ il E
N N |
g — O W W - WOV W W - g T O W W - O W W -
S 9O NO AN 9 9d9OKNOAqAONg
» 2 8280 2 c 2 » 2 8 280 2 c 2
- o 2 o < o o - o 2 o 2 IS} IS
o o o o

Argument Mutation Rate

Figure 2: This graph shows the number of successful runs when
using our tag-accessed memory (right column) versus using tradi-
tional direct-indexed memory (left column) across five problems
and ten instruction argument mutation rates (after 100 generations
for number IO and 500 generations for all other problems).

added custom instructions to the instruction set that facilitated load-
ing test case inputs into memory and returning program responses.
We used the same training and testing sets when evaluating pro-
grams as Helmuth and Spector in [2]. We measured performance
by counting the number of successful runs (i.e., runs that produced
a perfect solution).

For each experimental condition, we evolved 50 replicate popu-
lations of 500 individuals (for 100 generations for the number IO
problem and 500 generations for all other problems), giving each
replicate a unique random number seed. We propagated programs
asexually and applied mutations to offspring (single-instruction
insertions, deletions, and substitutions at a per-instruction rate of
0.005 each and multi-instruction sequence duplications and dele-
tions at a per-program rate of 0.05). The relative success of these
two memory-indexing techniques is influenced by how (and at what
rate) we mutate instruction arguments; as such, we mutated tag-
based arguments (per-bit) and traditional arguments (per-argument)
at the following ten rates: 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01,
0.025, 0.05, 0.075, and 0.1. See our online supplemental material
([6]) for source code, details on problem-specific configurations (e.g.,
program evaluation time, etc.), and for our more detailed analyses.

Figure 2 shows the performance of tag-accessed memory and
direct-indexed memory across all five problems and mutation rates.
For each problem, we selected the best (most successful) mutation
rate for tag-based arguments and the best mutation rate for tra-
ditional arguments. We compared the performance of tag-based
arguments and numeric arguments at these ‘optimal’ mutation
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rates, and we tested for we tested for statistical significance using
Fisher’s exact test (with a significance threshold of 0.05). Across

all problems, there was no statistically significant difference be-
tween tag-based instruction arguments (tag-accessed memory) and
numeric instruction arguments (direct-indexed memory).

3 CONCLUSION

Our preliminary experiments show that, under favorable mutation
rates, both tag-accessed and direct-indexed memory achieve sta-
tistically equivalent performance. Because tag-based instruction
arguments index into the closest matching memory register, sin-
gle bit-flip mutations may be neutral (not affecting the program’s
behavior), which affords programs robustness to minor genetic
perturbations. The down-side to a more robust genetic encoding
for instruction arguments is that mutations are less able to generate
novel phenotypic variation (program behavior). For the relatively
simple program synthesis problems used in our experiments, the
capacity of our GP system to generate novel phenotypic variation
is likely more important than robustness to mutation. Future work
will continue to explore the efficacy of tag-accessed memory, supple-
menting bit-flip mutation operators with more impactful mutation
operators that allow tag-mutations to more easily generate novel
phenotypic variation. Future work will also investigate the possi-
bility of coevolving register labels (tags) with programs, allowing
evolution to adjust the adjacency of memory registers in tag-space.
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