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Abstract

As the field of Artificial Life advances and grows, we find
ourselves in the midst of an increasingly complex ecosystem
of software systems. Each system is developed to address par-
ticular research objectives, all unified under the common goal
of understanding life. Such an ambitious endeavor begets a
variety of algorithmic challenges. Many projects have solved
some of these problems for individual systems, but these so-
lutions are rarely portable and often must be re-engineered
across systems. Here, we propose a community-driven pro-
cess of developing standards for representing commonly used
types of data across our field. These standards will improve
software re-use across research groups and allow for easier
comparisons of results generated with different artificial life
systems. We began the process of developing data standards
with two discussion-driven workshops (one at the 2018 Con-
ference for Artificial Life and the other at the 2018 Congress
for the BEACON Center for the Study of Evolution in Ac-
tion). At each of these workshops, we discussed the vision
for Artificial Life data standards, proposed and refined a stan-
dard for phylogeny (ancestry tree) data, and solicited feed-
back from attendees. In addition to proposing a general vision
and framework for Artificial Life data standards, we release
and discuss version 1.0.0 of the standards. This release in-
cludes the phylogeny data standard developed at these work-
shops and several software resources under development to
support our proposed phylogeny standards framework.

Introduction

Artificial Life (ALife) research is becoming more complex
as the field advances and as computational power increases.
Further, more recent initiatives have broadened the scope of
the field to intersect topics such as society and education, at-
tracting new and interesting perspectives to the community.
We find ourselves in the midst of an increasingly complex
ecosystem of ALife software systems (Taylor et al., 2016),
including research platforms, metrics, data visualizations,
et cetera. Each system is developed to address particular
research objectives, all unified under the common goal of
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understanding life; such a monumental goal begets a num-
ber of algorithmic challenges (e.g., tracking a single gene
through a genetic lineage, measuring the open-endedness
of a system, identifying and characterizing complex inter-
actions among individuals in a population). Many projects
have solved some of these problems in individual systems,
but these solutions are rarely portable and often must be re-
engineered across systems.

Many other communities have developed and lever-
aged data standards to dramatically improve their software
ecosystems. Data standards are specifications for organiz-
ing, annotating, and recording commonly-collected infor-
mation. That is, what specific values should we keep, what
descriptors (properties) should we use to specify them, and
in what format should they be stored?

We propose a community-driven process of developing
such standards for Artificial Life in an effort to improve
software re-use and allow for easier comparisons of data
generated with different artificial life systems. Standards
allow tools to be developed that can immediately be ap-
plied to data produced by unrelated systems, eliminating
the need for these tools to be re-written by each research
group. In addition to saving time, expanding the user base
for tools increases their reliability by making it harder for
bugs to go undetected. Moreover, creating a collaborative
software ecosystem will facilitate communication and coop-
eration among research groups by making it easier to com-
pare results across different systems using the same analysis
tools. Further, standards increase the incentive to develop
tools that solve elusive community-wide challenges, as you
will be able to immediately apply them to a broad cross-
section of available systems and data; likewise, many fellow
researchers will be able to make easy use of your tools.

We began the process of developing data standards with
two discussion-driven workshops at the 2018 Conference for
Artificial Life and the 2018 Congress for the BEACON Cen-
ter for the Study of Evolution in Action. At both work-



shops, we discussed the vision for ALife data standards,
proposed and refined a standard for phylogenies (that is, a
standard for describing parent-offspring relationships over
time), and solicited feedback from attendees (Lalejini and
Dolson, 2019); in conjunction, we developed software tools
to leverage these proposed standards. This paper is a contin-
uation of these efforts. Here, we provide examples of how
data standardization has benefited other scientific communi-
ties. We summarize our vision for artificial life data stan-
dards, and propose a framework for ALife data standards.
By way of example, we present the phylogeny standard dis-
cussed in both 2018 workshops; additionally, we identify
several existing software resources under development to
support our proposed phylogeny standards framework: de-
veloper utilities, data converters, and end-user tools. We
conclude with a discussion of future directions, including
possible concepts for future standardization.

The Benefits of Data Standardization:
Examples From Other Communities

As scientific communities extend their reach, data standards
provide a mechanism to unify software development and
provide a better user experience. Data standards afford de-
velopers a reduced barrier to entry, the ability to more easily
communicate across disciplines, and a broader impact from
their software efforts. As such, users experience a more uni-
fied software ecosystem where they can use the same anal-
ysis and visualization tools across research platforms. Our
vision for Artificial Life data standards is inspired by these
other successful efforts.

Data standards have been successfully adopted through-
out history. For example, the metric system revolution-
ized how weights and other measures are used throughout
science, and failures to keep to this standard have proved
catastrophic (Board, 1999). The ASCII standard shaped
how modern computers manage text, allowing developers
to write versatile tools to manipulate human-readable files.
In modern biology, both computational neuroscience (Glee-
son et al., 2010; Richmond et al., 2014) and systems biol-
ogy (Hucka et al., 2003) have adopted successful data stan-
dards. In both cases, these standards were driven by an
open community approach, resulting in improved model ex-
change and design as well as the development of compliant
simulators. Furthermore, digital access to global data is inte-
gral to biodiversity research. The Darwin Core project data
standards (Wieczorek et al., 2012) define relevant proper-
ties for a range of scientific entities (e.g., taxa, occurrences,
fossil specimens); this standardization has eased communi-
cation of and collaboration using biodiversity data, allowing
the community to homogenize biodiversity record structure
across multiple repositories (Parr et al., 2012). The bioin-
formatics community is moving toward widely-adopted data
standards (Zhang et al., 2011), ushering the development of
broadly used (Wren, 2016) databases and software tools.
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Highly relevant to the field of Artificial Life, the Robot
Operating System (ROS) is a popular, open-source soft-
ware development framework that defines communication
and data standards. The ROS standards have facilitated
massive community software development, sharing, and
reuse (Quigley et al., 2009). By defining common stan-
dards for software, ROS unifies disparate sub-communities
(ranging from academic researchers to industrial engineers
to hobbyists), creating the opportunity for robotics collab-
orations among people who would have never even com-
municated otherwise. In 2012, the ROS community began
organizing annual ROScon events, an international confer-
ence where ROS software developers meet and present re-
cent software applications, ideas, and tools. All of this com-
munity buy-in and support for software developers eases on-
boarding for new researchers and lowers the barrier to mak-
ing meaningful software contributions for the community.

Our Vision for Artificial Life Data Standards

Data standards specify how data are described (ontolo-
gies) and recorded (formats). Because the types of data
used in Artificial Life research are many and varied (from
experiment-to-experiment and system-to-system), any use-
ful set of standards for our community will need: 1) a min-
imalist and inclusive core shared by all, 2) a flexible mech-
anism for extensions to encompass the idiosyncrasies of in-
dividual systems, and 3) enough descriptive power to allow
for tools that will be broadly useful.

Because ALife systems and experiments are diverse, we
must ensure that standards for describing different types
of data are flexible. We envision that each data standard
should minimize the number of properties required to spec-
ify the concept of interest; we should avoid incorporating
extraneous or restrictive assumptions into the standards, en-
suring the core of each standard remains inclusive. For
example, to meaningfully describe a lineage, we require,
at minimum, information about parent-offspring relation-
ships. While broadly applicable, such a data standard would
sacrifice utility if it disallowed extra information of poten-
tial interest such as organism characteristics or mutational
changes that occurred along the lineage. Thus, in addition
to a set of mandatory properties, each data type will also
standardize a set of optional (or “conventional”) properties.
Standard-compliant data are not required to report optional
information; however, if standardized optional properties
are included, they must use the specified labels and format-
ting. Each standard-compliant software tool must document
which optional properties it accepts and/or requires, and be
able to ignore those that it does not use.

The diversity of systems and experimental settings not
only requires flexibility on what data may be recorded but
also on how it should be recorded (i.e., the underlying file
formats). Depending on the data itself and on what one
wants to do with it, the choice of file format could range



from a verbose format such as JSON or XML to a com-
pressed binary format. Our vision is for the standards to
support multiple, interchangeable file formats (e.g., XML,
JSON, CSYV, binary, etc.) to ensure that data recording is
maximally flexible. Any of these formats could be used to
store data and provide input to standard-compliant software
tools; this flexibility, however, demands that we provide de-
tailed guidelines for conversions between storage formats.

Proposed Standards Framework

Our proposed standards framework specifies: 1) the termi-
nology for referring to specific concepts (ontology), 2) a
structure for describing data, 3) rules for formatting data,
and 4) the process for creating and modifying the standards.
Note that our proposed framework does not constrain meth-
ods for analyzing or working with data. However, agreeing
on standardized ways of formatting and describing data will
ease the development of analysis tools and visualizations.

Ontology

A critical component of any data standard is a set of agreed-
upon terminology for describing data, with clear rules about
how information fits together. In information science, such
a framework is called an onfology (Smith and Welty, 2001).
For consistency, we will use the same terms that are used in
other ontology development research.

Each individual standard in our framework specifies a
way of describing and storing a particular instance of a con-
cept (e.g., the “phylogeny standard” describes how to store
the concept of a phylogeny). Each instance of a concept
can be described with a single, arbitrarily large data table
where rows are entities (e.g., individual taxa in a phylogeny)
and columns specify properties (e.g., ancestor IDs or trait
values) of each entity; further, an individual data table may
contain entities of only a single type or category.

Describing Data

Each standardized data type (concept) has three categories
of properties (i.e., data fields or attributes): required proper-
ties, conventional (or optional) properties, and extra (or ad-
ditional) properties. To qualify as standard-compliant, a data
file must abide by all required properties. Required proper-
ties are what the community determines to be the minimal
set of properties needed to meaningfully specify the concept
of interest. Properties should only be given required status if
they are fundamental to the concept being represented, such
as parent-offspring relationships in a phylogeny.

In addition to required properties, each concept will stan-
dardize a set of conventional properties. Conventional prop-
erties are used to describe pieces of data that are often impor-
tant, but are not fundamental to the concept being recorded.
As such, standard-compliant systems are not required to out-
put conventional properties (and, indeed, these properties
may not even be meaningful in all systems or setups). If you
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do choose to output conventional properties and label them
according to the standard, these properties may be leveraged
by standard-compliant tools. For example, mutation counts
are not required to record a phylogeny, but if they are in-
cluded, analysis tools can produce more informative visual-
izations indicating amount of change over time.

Extra properties include any data not otherwise specified;
these are system-specific or experiment-specific properties
that further describe the concept. Allowing for arbitrary ex-
tra properties ensures the standard is inclusive and easy to
use. Software tools should document any extra properties
they can make use of and their meaning. In the event that
an extra property is used by multiple software systems, it
may be appropriate to formalize it as a conventional prop-
erty. Additionally, many software tools may be able to use
arbitrary properties by name. For example, a user may be
able to choose an any property they want to color-code a
phylogeny.

Property names must be consistent across file formats. As
of version 1.0.0, all property names are in snake case: fully
lowercase (e.g., ‘id” instead of ‘ID’ or ‘Id”) and underscore-
separated as appropriate (e.g., ‘ancestor_list’). When decid-
ing on required or conventional property names, we will err
on the side of being descriptive to ensure that files remain
intuitive. We encourage extra properties to be similarly de-
scriptive to simplify data sharing, limit name collisions, and
facilitate future conversion to conventional property status.

Naming Modifiers Workshop participants suggested we
specify conventions for naming common types of properties
(e.g., lists, averages, variances, efc.). For example, the prop-
erty for identifying the set of offspring produced by a par-
ticular organism might be called ‘offspring_list’ instead of
‘offspring’ to indicate that the property refers to a list. We
envision the set of these conventions (i.e., naming modifiers)
to grow as new tools are developed and as the standards grow
to encompass more concepts. Table 1 provides the set of
naming modifiers in version 1.0.0 of the standard. Naming
modifiers should be applied to the end of the property name,
connected via an underscore (e.g., ‘offspring_list’). These
conventions allow tools to be more flexible when loading
and processing standardized data by inferring data types
for properties and identifying property relationships from a
common prefix. For example, if a tool sees both fitness_ave
and fitness_std, it may reasonably assume that these refer to
the average and standard deviation of the same distribution.

Reserved and Default Values For certain properties, it is
valuable to reserve values to have special meanings. For
example, what value should ancestor_list use to indicate that
an organism in a phylogeny was created randomly and there-
fore has no ancestors? This parameter could be left empty,
but how would we be able to differentiate this organism from
one that migrated from another population or from an or-



Table 1: Proposed conventional property name suffixes.

Suffix Description of Property
ad A unique identifier, often numerical.
_name A string label identifier.
_count A whole number count.
_total A cumulative result of counts over time.
_list A list of values.
_sum The summed total of a list of values.
_time A numerical measure of time.
_rate _prob | A rate or probability.
_ave _med | Measurements of an observed or calculated
_min _-max | distribution (average, median, minimum,
_var _std maximum, variance, standard deviation, skew,
_skew _kurt | and kurtosis).

ganism that was loaded from a previous experiment? The
standard can specify a set of conventional reserved values,
giving standard-compliant tools a way to recognize and dif-
ferentiate these special cases.

Just as it is useful to reserve data values, it may also be
useful for the standard to specify reasonable default values
for certain conventional (non-required) properties. Accepted
and well-documented default values allow tools to make pre-
dictable assumptions in cases where conventional properties
are missing.

Formatting Data

Our proposed standards framework supports multiple for-
mats for recording and storing data. Every standard-
compliant tool will be required to support at least one
standard-compliant file types as input; we will curate tools
capable of converting data between supported file formats.
As of version 1.0.0, the standards support JavaScript Ob-
ject Notation (JSON) and Comma Separated Values (CSV)
formats. As demand builds for additional file formats, the
community can develop rules for representing standard data
in these new formats (along with converters to and from
already-supported formats).

Process for Amending Standards

In the long run, we will model the ALife data standards
on other open source projects. As the number of standard-
compliant tools increases, so too will the number of peo-
ple who are invested in their maintenance and improvement.
Thus, it is important to establish a process for amending the
standards. Our initial set of standards are housed in a repos-
itory on GitHub (Lalejini et al., 2019). Anyone can suggest
an update to the standards by submitting a pull request or
issue. Proposed changes will be reviewed and discussed by
interested community members to ensure that 1) they are
backwards-compatible (unless there is a compelling reason
for a breaking change), 2) they do not replicate or clash with
existing standards, and 3) they are well specified, inclusive,
and flexible. Following this discussion and a positive con-
sensus, the changes will be merged in. This process fol-
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lows the successful precedent set by other open source stan-
dards (Darwin Core task group, 2014). We anticipate that
additions to the standards will be driven by tool developers
adopting conventions for how to name specific types of data.

Changes to the standards will be tracked using seman-
tic versioning, a system of assigning version numbers that
conveys information about how similar successive versions
are. Versions are identified with a sequence of three numbers
(e.g., as of this paper, we are on version 1.0.0), which indi-
cate the “major version”, “minor version”, and “patch” re-
spectively. Typically, a change in the major version denotes
a break in backwards compatibility, a change in the minor
version denotes the addition of new backwards-compatible
features, and a change in the patch denotes minor bug fixes.

Proposed Phylogeny Standard

The problem of how to represent a phylogeny in a stan-
dardized way has long been important to biology, even
without the wealth of data we have access to in AL-
ife. Biologists have developed a few standard representa-
tions for phylogenetic trees (Cranston et al., 2014). Some
popular formats include Newick (Cardona et al., 2008),
Nexus (Maddison et al., 1997), NHX (Zmasek and Eddy,
2001), PhyloXML (Han and Zmasek, 2009) and RecPhy-
lIoXML (Duchemin et al., 2018). Newick format is a simple
nested format for representing the hierarchy of a tree (a tree
with three nodes might be represented as ((A,B),C), for ex-
ample). Nexus and NHX formats build upon Newick with
additional information (e.g., the inclusion of a genetic se-
quence alignment among the represented taxa). PhyloXML
and RecPhyloXML support the inclusion of additional sup-
plemental data, but still use a nested format.

Why not use one of these existing standards for phylo-
genies in artificial life? These biological phylogeny stan-
dards were designed to work with species phylogenies in-
ferred from extant taxa (and fossil data). As such, these
standards are not designed to represent phylogenies with
finer taxonomic scale. In artificial life, it is often reasonable
to examine the complete phylogeny of every individual that
ever existed. Attempting to do so presents two problems for
phylogeny standards used in biology: 1) representing any
phylogeny where taxa have multiple parents is impossible in
these standards, and 2) complete phylogenies can be so big
that it is necessary to split them across multiple files — nested
formats (as used in biology) do not support such splitting.

During the workshops at ALife 2018 and the 2018 BEA-
CON Congress (Lalejini and Dolson, 2019), we created a
proposed standard for representing phylogenies. After con-
tinued discussion, we believe that it is now ready to be
adopted.

Phylogenies depict parent-offspring relationships over the
course of evolution. Phylogenies can be constructed for any
taxonomic unit of organization (e.g., individuals, genotypes,
species, efc.); thus, we use the term “taxon” to refer gener-



id ancestor_list | origin_time | destruction_time shape corners color
0 [none] 0 1 circle rounded blue
1 [0] 1 2 square rounded blue
2 [0] 1 2 circle rounded purple
3 [1] 2 none square sharp blue
4 1 2 none square rounded yellow
5 [2] 2 none circle rounded purple

Figure 1: (A) A simple phylogenetic tree where each entity’s id is given inside of its ‘colored-shape’ phenotype. (B) A corresponding
standard-compliant data table. The data includes required properties (id and ancestor_list), two optional properties (origin_time and destruc-
tion_time), and three extra properties that were used by the visualization (shape, corners, and color).

ally to an entity in a phylogeny. Each taxon in the file must
have existed at some point, and each relation from one en-
tity to another defines an ancestor-descendant relationship
between the two entities (taxa).

The phylogeny standard has two mandatory properties: id
and ancestor _list. The id property provides a unique identi-
fier corresponding to that taxon. The ancestor _list property
contains a list of ids corresponding to ancestors of the taxon.
These are not required to be the direct parents of the taxon,
but they will usually be treated as the closest ancestors in
the phylogeny. All ids in the ancestor_list must correspond
to taxa in the file. In cases where a taxon has no ancestors
in the file, non-numeric string values can be used to specify
that taxon’s origin.

Version 1.0 of the phylogeny standard has two optional
properties: origin_time and destruction_time, which spec-
ify the time that the taxon came into and out of existence,
respectively. Setting these properties to strings also allows
for special values, such as a keyword for destruction_time
to indicate that a taxon is still alive. Figure 1 gives an ex-
ample of a phylogeny and its associated standard-compliant
description.

Current Software Support

In addition to housing the Artificial Life data standards
specifications in a GitHub repository, we plan to main-
tain a community-curated list of standard-compliant
software tools on GitHub (https://github.com/
alife-data-standards/alife-data-tools; Bohm
et al. 2019). This list of software resources is modeled
after other efforts to use GitHub as a platform for selecting,
evaluating, and organizing public resources for preservation
and future use (Wu et al., 2017). Anyone can suggest
an update to the list of software resources by submitting
an issue or a pull request; for example, a student who
has developed a useful visualization tool and written an
explanatory blog post would be able to submit an issue to
have a link to their visualization and blog post added to the
list of software resources.

While concentrating developer effort on a single set of
tools will make those tools more reliable, it also increases
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the harm that any individual bug in the software can do. To
minimize this risk, we advocate the use of software develop-
ment best practices. All repositories maintained by the Arti-
ficial Life Data Standards Organization use continuous inte-
gration to ensure that all code is automatically tested when a
change is made. Test coverage is measured to facilitate these
test suites in becoming comprehensive. Lastly, static analy-
sis is automatically performed to identify error-prone code.
Software on the resource list will be classified by reliability
based on how well it follows these best practices.

Thus far, we have developed (and are continuing to de-
velop) a variety of software resources to support our pro-
posed phylogeny standard. These resources fall under three
broad categories (that are not necessarily mutually exclu-
sive): developer utilities, data converters (to and from the
standard), and end-user tools. In addition to being useful on
their own, we intend for these resources to serve as templates
for developing new standard-compliant software tools. As
we develop more software support, we will document them
on our list of standard-compliant software tools on GitHub
(Bohm et al., 2019). The rest of this section discusses each
of the software tools already developed that work with the
AlLife data standards.

Developer Utilities

Developer utilities include software packages and libraries
that can be incorporated into new tools. Thus far, we have
begun development on a Python package for working with
standardized phylogeny data. We plan to produce a simi-
lar set of tools in C++. As additional ALife standards are
released, tools to assist developers using that standard will
encourage broader adoption.

ALife Standards Development Python Package The
ALife data standards Python package includes functions
for loading a standard-formatted phylogeny file as a Net-
workX (Hagberg et al., 2008) directed graph object. Python
is a popular language for many tasks including data manip-
ulation and analysis; further, many efforts have been made
to build interfaces from Python to other languages (e.g., Al-
laire et al. 2018; Guelton et al. 2015). These benefits, in



addition to its ease of use, make Python an ideal language
for developing this initial package of software utilities.

NetworkX is a popular Python package for creating and
manipulating graphs. By representing phylogenies as Net-
workX graph objects, we can apply existing graph al-
gorithms and visualizations to our phylogenies. Addi-
tionally, our Python package contains utilities for sav-
ing, manipulating, and analyzing phylogenies and lineages.
See https://github.com/alife-data-standards/
alife-std-dev-python for a more detailed description
of this package’s current functionality.

Data Converters

Data conversion tools translate data files between formats.
Data converters may allow one to use standard-compliant
analysis or visualization tools on data produced by non-
standard-compliant systems and vice-versa. Data converters
may also be developed to translate between different encod-
ings of ALife standard data (e.g., from JSON to CSV, each
of which having their pros and cons). We envision data con-
verters serving as the bridge between otherwise incompati-
ble software tools and systems. Thus far, we have developed
three data conversion utilities:

Avida to Standard Phylogeny In the Avida Digital Evo-
lution Platform (Ofria and Wilke, 2004), self-replicating
computer programs compete, mutate, and evolve. Avida
has been used to study a wide range of evolutionary dy-
namics (e.g., Goldsby et al. 2012; Zaman et al. 2014; Dol-
son et al. 2016). By default, Avida outputs population files
at regular intervals during an experiment. Each population
file contains information about the genotypes present in the
current population as well as the full ancestral lineages for
each extant genotype. Our Avida to standard phylogeny con-
verter takes a single Avida population file as input and con-
verts it into the standard phylogeny format (either as CSV
or JSON). This converter and more detailed usage informa-
tion can be found on GitHub at https://github.com/
alife-data-standards/converters-avida

MABE to Standard Phylogeny The Modular Agent-
based Evolver (MABE) is a software framework devel-
oped to support research in digital evolution and artificial
life (Bohm and Hintze, 2017). MABE allows researchers
to construct experiments by combining different types mod-
ules: genomes, brains, environments, and selection meth-
ods. These modules can be drawn from an ever-growing
collection or be developed by the user as necessary.

MABE outputs ancestry information in a series of pop-
ulation snapshot files (either full snapshots or pruned
snapshots without reproductively unsuccessful individuals).
The MABE to standard phylogeny converter takes these
MABE snapshot files and optionally a list of column names
that should be included in the standard phylogeny out-
put. This converter and more detailed usage informa-
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tion can be found on GitHub at https://github.com/
alife-data-standards/converters—-mabe.

Standard Phylogeny to VINE The Visual Inspector for
NeuroEvolution (VINE) (Wang et al., 2018) is under ac-
tive development by UBER Labs in conjunction with their
Deep Neuroevolution project (Such et al., 2017). VINE al-
lows users to visualize how an evolving population moves
through trait space over time. The standard phylogeny to
VINE converter allows users to identify which properties of
their phylogeny data should be translated into the VINE in-
put format and creates the VINE-compliant input files (in
the appropriate directory structure). For more information
about VINE, see (Wang et al., 2018). More detailed us-
age information for our standard phylogeny to VINE con-
verter can be found on GitHub at https://github.com/
alife-data-standards/converters-vine.

End-user Tools

In support of the phylogeny standard and for our own re-
search purposes, we have developed data-processing scripts
and visualizations. These tools require users to provide
standard-compliant input files (via a command line or graph-
ical interface), processing the input as part of a data process-
ing pipeline or producing a visualization of the given data.

Phylogeny Web Visualization Visualization is a criti-
cal part of data analysis, helping us build intuitions and
communicate our results. We are actively developing a
web-based phylogeny visualization tool that takes standard-
compliant asexual phylogeny data as input and generates a
phylogenetic tree, color-coded based on a user-specified nu-
meric property (see Figure 2 for example output). Refer
to our GitHub repository for more detailed usage informa-
tion for this tool (https://github.com/emilydolson/
lineage_viz_tool).

Time to Coalescence Command Line Tool The time to
coalescence command line tool takes a standard phylogeny
as input calculates how far back in time we need to look
to find the most recent common ancestor of all extant taxa.
The tool searches the given standard phylogeny file for the
organisms with the greatest origin_time. It then traces the
ancestors recursively until it finds the most recent common
ancestor (MRCA), at which point the tool returns the time to
coalescence and the id value of the MRCA. See our GitHub
repository for more detailed usage information for this
tool (https://github.com/alife-data-standards/
tools—-pack-phylogeny).

Conclusions and Future Directions

In this work, we discussed the motivation and vision for a
set of ALife data standards. Additionally, we proposed a
standard for describing and storing phylogeny data and pre-
sented several software tools that have already been devel-
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Figure 2: Example output generated using the phylogeny web visualizer. Generations proceed from left to right with the extant taxa shown
on the far right. Nodes can be color-coded; here green and yellow indicate relatively high numeric values for the specified property.

oped to support the standard. We see this work as a con-
tinuation of the conversation started at the discussion-driven
workshops at the 2018 Conference for Artificial Life and
the 2018 Congress for the BEACON Center for the Study
of Evolution in Action. By reaching out to the wider ALife
community, we hope to broaden the scope of our standards,
continue developing software tools that work with standard-
ized data, and build community support for adopting and
improving data standards.

Ultimately, the success our proposed data standards will
depend on the level of community buy-in and adoption. The
utility of these standards will grow as more of the commu-
nity adopts and contributes to our ecosystem of data stan-
dards. To ensure an inclusive environment for standards de-
velopment and discussion, we have adopted a Contributor
Covenant code of conduct (Covenant, 2014).

As we only represent a subset of the ALife community,
we do not know the full set of data standards that would
be valuable to the community; for this, we turn outward:
what types of data should we develop standards for? In
workshop discussions, we identified the following targets
for future data standards: genomes, interaction networks,
fitness landscapes, and meta-data. While genomes can be
broadly defined as heritable and mutable material, develop-
ing a genome standard has proven elusive because of the
enormous variety of genetic representations used across dif-
ferent systems. Any adopted genome standard should be
flexible enough to support the varied types of both artifi-
cial and natural genomes; this would allow us to make di-
rect comparisons between digital and biological systems and
make the tools we develop useful to biologists. Interaction
networks describe the relationships between interacting en-
tities (e.g., objects, individual organisms, chemicals, ezc.);
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for example, a food web is a type of interaction network, de-
scribing the predator-prey relationships among species rep-
resented in the network. A fitness landscape characterizes
the mapping between the space of possible genotypes (or
a set of phenotypic traits) and fitness for a given environ-
ment. For example, given a genome and an environment,
the fitnesses of all possible one-step mutants describes the
local fitness landscape adjacent to the given genome. A fit-
ness landscape standard would allow researchers to more
effectively compare fitness landscapes across multiple en-
vironments and better study how populations move through
a fitness landscape over the course of evolution. Meta-data
provide context for other data; for example, meta-data might
identify the system or the parameters used to generate a data
set (e.g., a phylogeny). A standard for meta-data would fa-
cilitate improved data annotation and documentation, allow-
ing researchers to more easily replicate experiments from
other research groups.
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